Algebra
Basic Identies
(a+b) 2 = a 2 + 2ab + b 2
(a-b) 2 = a 2 - 2ab + b 2
a 2 + b 2 = (a+b) 2 - 2ab
a 2 + b 2 = (a-b) 2 + 2ab
a 2 - b 2 = (a+b)(a-b)
(a+b) 3 = a 3 + 3a2b + 3ab2 + b 3
(a-b) 3 = a 3 - 3a2b + 3ab2 - b 3
a 3 + b 3 = (a + b)(a2 - ab + b2)
a 3 - b 3 = (a - b)(a2 + ab + b2)
(a+b)(c+d) = ac + ad + bc + bd
x 2 + (a+b)x + ab = (x + a)(x + b)
Powers
x a x b = x (a + b)
x a y a = (xy) a
(x a) b = x (ab)
x (-a) = 1 / x a
x (a - b) = x a / x b
Logarithms
y = logb(x) if and only if x=b y
logb(1) = 0
logb(b) = 1
logb(x*y) = logb(x) + logb(y)
logb(x/y) = logb(x) - logb(y)
logb(x n) = n logb(x)
logb(x) = logb(c) * logc(x) = logc(x) / logc(b)
Basic Identities
Addition and Difference
Hyperbolic Definitions
Modern Algebra
Closure Property of Addition
Sum (or difference) of 2 real numbers equals a real number
Additive Identity
a + 0 = a
Additive Inverse
a + (-a) = 0
Associative of Addition
(a + b) + c = a + (b + c)
Commutative of Addition
a + b = b + a
Definition of Subtraction
a - b = a + (-b)
Trignometric Formulae
Relation
Between Degree and Radians:
Angles in
Degress
|
0
|
30
|
45
|
60
|
90
|
Angles in
radians
|
0
|
π / 6
|
π / 4
|
π / 3
|
π / 2
|
1c = (180 / π)o
1o = (π /
180)c
Trigonometric
Ratios of an acute angle of a right triangle:
Sin
θ = Length of opposite side / Length of hypotenuse side
Cos
θ = Length of adjacent side / Length of hypotenuse side
Tan
θ = Length of opposite side / Length of adjacent side
Sec
θ = Length of hypotenuse side / Length of adjacent side
Cosec
θ = Length of hypotenuse side / Length of opposite side
Cot
θ = Length of adjacent side / Length of opposite side
Reciprocal
Relations:
Sin
θ = 1 / Cosec
θ Sec
θ = 1 / Cos θ
Cos
θ = 1 / Sec
θ Cosec
θ = 1 / Sin θ
Tan
θ = 1 / Cot
θ Cot
θ = 1 / Tan θ
Quotient
Relations:
Tan
θ = Sin θ / Cos θ
Cot
θ = Cos θ / Sin θ
Trigonometric
ratios of Complementary angles:
Sin
(90 – θ) = Cos
θ Sec
(90 – θ) = Cosec θ
Cos
(90 – θ) = Sin
θ Cosec
(90 – θ) = Sec θ
Tan
(90 – θ) = Cot
θ Cot
(90 – θ) = Tan θ
Trigonometric
ratios for angle of measure:
θ
|
0
|
30
|
45
|
60
|
90
|
Sin
θ
|
0
|
1/2
|
1/√2
|
√3/2
|
1
|
Cos
θ
|
1
|
√3/2
|
1/√2
|
1/2
|
0
|
Tan
θ
|
0
|
1/√3
|
1
|
√3
|
∞
|
Cot
θ
|
∞
|
√3
|
1
|
1/√3
|
0
|
Sec
θ
|
1
|
2/√3
|
√2
|
2
|
∞
|
Cosec
θ
|
∞
|
2
|
√2
|
2/√3
|
1
|
Basic Identities
- Sin 2 x + Cos 2 x = 1
- Sec 2 x - Tan2 x = 1
- Cosec 2 x - Cot 2 x = 1
- Sin 2 x = 1 - Cos 2 x
- Cos 2 x = 1 - Sin 2 x
- Sec 2 x = 1 + Tan2x
- Cosec 2 x = 1 + Cot2 x
- Sec 2 x -1 = Tan2 x
- Cosec 2 x –1 = Cot2 x
Addition and Difference
- Sin(A+B) =
SinA CosB + CosA SinB
- Sin(A-B) =
SinA CosB - CosA SinB
- Cos(A+B) =
CosA CosB - SinA SinB
- Cos(A-B) =
CosA CosB + SinA SinB
- Tan(A+B) =
(TanA + TanB) / (1- TanA TanB)
- Tan(A-B) =
(TanA - TanB) / (1+ TanA TanB)
- Sin2A = 2
SinA CosA
- Cos2A =
Cos2 A - Sin2 A = 2 Cos2 A - 1 = 1 - 2 Sin2 A
- Tan2A = 2
Tan A / (1 - Tan2 A)
- Sin2 A = (1 - Cos2A)/2
- Cos2 A = (1 + Cos2A)/2
- Sin2A =
2TanA/ (1+Tan2A)
- Cos2A =
(1-Tan2A)/ (1 + Tan2A)
- Tan2A =
2TanA/ (1-Tan2A)
- Sin A = 2
SinA/2 CosA/2 = 2TanA/2 / (1+Tan2A/2)
- Cos A =
Cos2 A/2 - Sin2 A/2 = 2 Cos2 A/2 - 1 = 1 - 2 Sin2 A/2 = (1-Tan2A/2)/ (1 + Tan2A/2)
- TanA =
2TanA/2 / (1-Tan2A/2)
- Sin 3A = 3
Sin A - 4 Sin3A
- Cos 3A = 4
Cos3A- 3 Cos A
- Tan 3A =
(3Tan A – tan3A) / (1-3Tan2A)
- Cos2A/2 = 1 + Cos A/2
- Sin2A/2 = 1 - Cos A/2
- Cos3A = (3Cos A + Cos 3A)/4
- Sin3A = (3Sin A + Sin 3A)/4
- Sin 18 =
(√5 – 1)/ 4
- Cos 36 =
(√5 + 1)/ 4
- Sin(A+B) Sin(A-B)
= Sin2 A - Sin2 B
- Cos(A+B) Cos(A-B)
= Cos2 A - Sin2 B
- 2 Sin A
Cos B = Sin(A+B) + Sin(A-B)
- 2 Cos A
Sin B = Sin(A+B) - Sin(A-B)
- 2 Cos A
Cos B = Cos(A+B) + Cos(A-B)
- 2 Sin A
Sin B = Cos(A-B) - Cos(A+B)
- Sin C -
Sin D = 2 Sin( (C - D)/2 ) Cos( (C + D)/2 )
- Cos C -
Cos D = -2 Sin( (C - D)/2 ) Sin( (C + D)/2 )
- Sin C +
Sin D = 2 Sin( (C + D)/2 ) Cos( (C - D)/2 )
- Cos C +
Cos D = 2 Cos( (C - D)/2 ) Cos( (C + D)/2 )
Hyperbolic Definitions
sinh(x) = ( e x - e -x )/2
cosech(x) = 1/sinh(x) =
2/( e x - e -x )
cosh(x) = ( e x + e -x )/2
sech(x) = 1/cosh(x) = 2/(
e x + e -x )
tanh(x) = sinh(x)/cosh(x)
= ( e x - e -x )/( e x + e -x )
coth(x) = 1/tanh(x) = ( e x + e -x)/( e x - e -x )
cosh 2(x) - sinh 2(x) = 1
tanh 2(x) + sech 2(x) = 1
coth 2(x) - cosech 2(x) = 1
Inverse
Hyperbolic Definitions
Sinh-1(z) = log( z + (√z2 + 1) )
Cosh-1(z) = log( z + (√z2 - 1) )
Cosh-1(z) = log( z + (√z2 - 1) )
Tanh-1(z) = 1/2 log(
(1+z)/(1-z) )
Relations
to Trigonometric Functions
sinh(z) = -i sin(iz)
cosech(z) = i cosec(iz)
cosh(z) = cos(iz)
sech(z) = sec(iz)
tanh(z) = -i tan(iz)
coth(z) = i cot(iz)
sin(-x) = -sin(x)
cosec(-x) = -cosec(x)
cos(-x) = cos(x)
sec(-x) = sec(x)
tan(-x) = -tan(x)
cot(-x) = -cot(x)